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R
egenerative medicine and emerging biotechnologies stand to revolutionize the prac-

tice of medicine. Advancements in stem cell biology, including embryonic and post-

natal somatic stem cells, have made the prospect of tissue regeneration a potential clini-

cal reality. Short of reproductive cloning, these same technologies, properly used, could

allow for the creation of replacement tissue for the deficient host. To provide a concise review for

surgeons on the current science and biology of stem cells, we surveyed the scientific literature,

MEDLINE, and relevant political headlines that illuminate the stem cell discussion; the issues are

summarized in this review. Building on this conceptual framework, the related issues of clinical

promise and the political debate enveloping this emerging technology are examined. A basic un-

derstanding of stem cell biology is paramount to stay informed of this emerging technology and

the national debate. Arch Surg. 2004;139:93-99

Stem cell biology is currently one of the
most exciting areas of biomedical re-
search, as enthusiasm for the application
of this technology toward regenerative
medicine continues to expand. The appli-
cation of cells in a therapeutic fashion may
become a natural extension of the pre-
sumed potential of these unique cell popu-
lations with wide-ranging capabilities. As
with many new and exciting technolo-
gies, much remains to be tested, proved,
and delivered to separate the hope from
the hype. In this review, we attempt to de-
liver the current “state of the art” in stem
cell research and to provide a conceptual
framework that can be used by surgeons
as a basis for critical assessment of this
quickly expanding and fascinating field.

The first large mammal cloning ex-
periment, widely publicized in 1997, pro-
vided new impetus to the prospect of re-
generative medicine through stem cell
research.1 In the case of Dolly, an entire
adult ewe was successfully cloned as an ex-
act phenotypic and genetic match of its
founder organism.1 This startling achieve-
ment was a reminder that DNA is con-

served during the development of com-
plex multicellular organisms. If an entire
adult ewe could be recapitulated from a
postnatal somatic cell, then clearly the ge-
netic potential should persist to regener-
ate whole tissue and organ systems.
Nuclear transfer, the same technology that
created Dolly, could be used to create the
raw material to replace defective or senes-
cent tissue as a natural extension of the bi-
ology of stem cells.2-5 The specter of hu-
man cloning and nuclear transfer as a
means of creating autologous embryonic
stem (ES) cells (each individual’s identi-
cally matched ES cells) has also stirred a
parallel political debate.6,7 The contro-
versy divides the potential hope given to
many present-day patients against the req-
uisite and ethically contentious creation
of human blastocysts for therapeutic in-
tent.6

ES CELLS: CONCEPTS

AND DEFINITIONS

Embryonic stem cells are totipotent cells
that can be derived from the inner cell mass
of a blastocyst during gastrulation.8 If sepa-
rated from the remainder of the blasto-
cyst, with concomitant inherent arrest of
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further embryonic development, the in-
ner cell mass can be maintained in a
largely undifferentiated state, forming
embryoid bodies in which early embry-
onic cell lineages can develop.5,8 Em-
bryonic stem cells represent a potential
source of cells with practically unlim-
ited self-renewal and differentiation ca-
pacity. Able to give rise to all of the so-
matic and germ line cells of the fully
developed organism, these cells are the
“uncommitted” progenitors of the sub-
sequent 3 embryonic germ layers: ecto-
derm, endoderm, and mesoderm.4,5,8,9

The ES cell is the prototypical stem cell,
as defined by its ability to indefinitely
expand, self-renew, and give rise to more
specialized progeny cells.

Nuclear transfer is a process
wherein the nucleus of a postmitotic so-
matic cell is injected into an unfertil-
ized, enucleated oocyte (Figure1).1,5,10

Through this nuclear manipulation, a
blastocyst can be achieved that may re-
alize one of several alternative fates. If
the blastocyst is transferred to a recep-
tive maternal surrogate, fully repli-
cated progeny can be achieved in a pro-
cess of reproductive cloning (Figure 1).1,11

Alternatively, if the inner cell mass is iso-
lated and separated from the blasto-
cyst, then undifferentiated ES cells can
be derived.10,12 This totipotent ball of cells
is capable of reproducing individual cells
and, therefore, tissues of the postnatal
organism from which it was derived in
a process known as therapeutic cloning
(Figure 1).5,8,9 Through this process, each
individual could potentially create an au-
tologous source of his or her own fully
immune-compatible ES cells. It is para-
mount to distinguish the divergent pro-
cesses and outcomes of reproductive and
therapeutic cloning from the same tech-
nique of nuclear transfer (Figure 1). Un-
certainty persists as to the true histo-
compatibility of clonally derived ES cells
given the persistence of mitochondrial
DNA in the recipient enucleated oo-
cyte.13,14 Moreover, the biological po-
tential and the competitive characteris-
tics of cloned cells compared with ES
cells derived from blastocysts as a re-
sult of gamete fusion remain un-
known.11,15

Recently, investigators16 at the
Massachusetts Institute of Technol-
ogy demonstrated proof of principle for
therapeutic cloning by correcting the
gene defect in Rag2 immunodeficient
mice (complete lack of B and T cells)
(Figure 2). Through a combination of
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Figure 1. The divergent processes of reproductive and therapeutic cloning. The common steps of
somatic cell nuclear isolation and injection into an enucleated oocyte are demonstrated. Once a blastocyst
is created, it can be used for either distinct process.
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Figure 2. Nuclear transfer, gene therapy, and cell transplantation as a possible clinically applicable
paradigm for genetic and subsequent phenotypic correction. This schema was successfully used as proof
of principle in a murine model by investigators at the Massachusetts Institute of Technology.16
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nuclear transfer to create major histocompatibility com-
plex–compatible ES cells, homologous recombination for
genetic correction, in vitro differentiation to hematopoi-
etic stem cells (HSCs), and final transplantation to Rag2
recipients, mice were successfully genetically and phe-
notypically corrected (Figure 2).16 Whereas this set of ex-
periments demonstrates the utility of nuclear transfer for
therapeutic cloning, equally numerous studies now dem-
onstrate the frailty of nuclear transfer for reproductive
cloning. Reproductive cloning has been found to be mostly
a highly inefficient process, moreover producing abnor-
mal progeny in what is becoming known as the “large
offspring syndrome.”15 In whole-organism cloning, there
seems to be epigenetic derangements, resulting in fetal
overgrowth, placental defects, and a myriad of at least
common skeletal abnormalities.15,17,18

Despite the unquestioned totipotency of ES cells,
there are numerous unanswered biological questions as
to the regulation of their growth and differentiation. The
safety profile of unselected ES cells for transplantation
has early on demonstrated dysregulated cell growth with
transplantation to the immunocompromised host, re-
sulting in teratoma formation.19 This example speaks to
the need to explore strategies for ES cell predifferentia-
tion or selection for lineage specification before at-
tempts at in vivo use. Early studies20,21 in murine ES cells
have developed cell trapping mechanisms based on lin-
eage-specific gene activation. Strategies currently being
investigated seek to predifferentiate ES cells in vitro be-
fore functional in vivo testing.22-24 Many of the master tran-
scription factors, such as stem cell ligand, first identi-
fied as controlling differentiation of postmitotic HSCs are
now being exploited to control differentiation of ES
cells.25,26 Furthermore, gene profiling of many stem cell
lines for master transcription factors, such as the Oct4
gene, are under way in an effort to understand the sig-
nals that control cell proliferation and differentiation in
ES cell and postnatal stem cell sources (ie, HSCs).25-27

Substantial roadblocks must be overcome before at-
tempting clinical application. Foremost is the need for bulk
cultures of ES cells for studies addressing basic biological
questions. Given the wide variety of genetic variability and
epigenetic changes that occur in ES cells, large numbers
of cell lines in addition to those with current federal gov-
ernment approval for study are needed to successfully study
these complex biological processes.17,18,27 Beyond the use
of ES cells for replacement biology is their practical utility
for the study of the genetic basis of human disease. The
current US government moratorium on federal funding for
human ES cell studies stands to considerably impede the
pace at which this critical work can proceed.28,29

Even with governmental support, practical and bio-
logical barriers to wide applicability can be foreseen. For
example, current culture techniques for human ES cells
require a xenoculture feeder cell system that would meet
with considerable Food and Drug Administration restric-
tions.10 In the murine system, ES cell expansion can be sup-
ported by the growth factor leukemia inhibitory factor, a
supplement that does not work with human ES cells.23 Since
the first description of successful human ES cell isola-
tion, subsequent work has struggled to define an efficient
system for human cell growth and expansion.10 These ex-

amples substantiate concerns that the mouse and human
systems are sufficiently diverse in that there cannot be a
reasonable expectation that lessons learned from work with
murine ES cell systems will find direct translation to the
human systems. From a practical standpoint, even long-
term batch cultures of allogeneic cells would be beset by
histocompatibility barriers to effective and widespread ES
cell transplantation strategies. This issue further speaks to
a current shortcoming of strategies to “scale up” ES cell
production for clinical use unless autologous ES cells are
created on an individual need basis via nuclear transfer,
for example. An alternative strategy would be to create
large-scale banks of ES cell lines, most likely derived from
in vitro fertilization blastocysts, for HLA typing and cell
matching to potential recipients.

Despite their initial promise, ES cells have met with
mixed enthusiasm for their use and investigation given
the considerable moral objections surrounding their deri-
vation and procurement.6,7 In 2001, the executive and leg-
islative branches of the US government introduced the
Human Cloning Prohibition Act (the Brownback Bill),
which called for a ban on nuclear transfer for the pro-
duction of therapeutic stem cells and on human cloning
altogether.6 Similarly, in 2001, US President Bush28 lim-
ited “allowable” federally funded research on human ES
cells to the “more than 60 genetically diverse stem cell
lines that already exist.” White House policy also estab-
lished eligibility criteria for additional lines in develop-
ment to qualify for federal funding.29 Most researchers
dispute the claims by President Bush and argue that more
reasonable estimates place the number of usable human
ES cell lines at a much smaller number.

In August 2002, the US Senate defeated the Brown-
back Bill, effectively preventing a promised presidential
signing into law. The US Congress will continue to re-
visit these earlier decisions just as more lenient regula-
tions and governmental investment in the United King-
dom, Australia, and Singapore are facilitating a broadening
interest in human ES cell research.30-32 Many researchers
argue that US restrictions will stymie stem cell research
in the United States and result in, at minimum, a flight of
intellect to countries with more liberal regulations.33 Other
investigators see the United States falling behind in a criti-
cal technology that, if ignored, will be developed else-
where only to be imported or altogether unattainable in
the United States because of the political atmosphere.6 For
now, there will be lobbying on both sides of the argu-
ment in the United States that should be influenced by a
broad national dialogue on the societal, ethical, and sci-
entific issues raised by this technology. Although few in-
dividuals outside the theological fringes would argue the
merits of human reproductive cloning, the scientific com-
munity, via the National Academy of Sciences, has ar-
gued strongly for (1) a continuation of human ES cell re-
search with allowable nuclear transfer for ES cell derivation
for therapeutic intent and (2) a continued ban on human
reproductive cloning.34-36

POSTNATAL SOMATIC STEM CELLS

In response to these political and biological roadblocks,
investigators have sought other possible sources of pluri-
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potent cells.2,9,37,38 Tissue-specific stem cells have long been
recognized to exist in postnatal and adult animals.9 In
their tissue of residence, these cells function as lineage-
committed progenitors to cells capable of more highly
specialized tasks. Many examples exist in such dispar-
ate locations as the gut crypt cell, the skin bulge cell, and
the hepatic oval cell.9 Perhaps the best characterized and
most widely understood are the HSCs. These cells, by their
known biology and clinical success, have provided for a
classic paradigm of sorts to which all other candidate post-
natal stem cell populations are held. The HSCs fulfill the
requirement of asymmetrical cell mitoses, whereby each
cell division is capable of producing another pluripo-
tent progenitor and a more specialized daughter cell.39,40

Furthermore, the true HSC is capable of indefinite self-
renewal, and until recently it had a restricted ontogeny
that included all the cells of the myeloid and lymphoid
systems.39

The concept of adult tissue-specific stem cells has
been a fundamental premise and has served as the model
of renewal for postnatal tissue. Developmental biology
has long held that lineage determination is an irrevers-
ible commitment to a particular tissue type fixed by tri-
laminar embryonic differentiation. A series of recent star-
tling findings41-45 have challenged this dogma, as cells that
originate in the bone marrow (BM) have taken on new
tissue-specific phenotypes as broad ranging as neurons,
hepatocytes, myocardium, and skeletal muscle. In an ex-
periment of nature, multiple postmortem examinations
of hepatic, cardiac, and brain tissue in patients who had
received cross-sex BM transplants have revealed some star-
tling findings.46-49 The findings of Y chromosone–
positive hepatocytes, cardiomyocytes, and neurons in fe-
male recipients of male BM transplants have caused long-
standing biological dogmas to be questioned. These
observations have led many researchers to question the
stochastic or possibly physiologic relevance of these seem-
ing cell fate switches.50

In one of the more robust experimental demonstra-
tions of cellular plasticity, Lagasse and colleagues43 used
whole BM enriched for HSCs to rescue a murine model
of fatal hereditary tyrosinemia by regenerating deficient
hepatic mass. Similar previous descriptions of cell fate
switches have almost uniformly been described for the
HSC. These observations have disarmed long-held be-
liefs in the lineage-restricted stem cell with finite spe-
cialization repertoire. These lineage changes have been
termed cellular transdifferentiation and have served to re-
new interest in the HSC for more widely applied clinical
intent other than BM reconstitution.51-54

There have been numerous equally varied and com-
pelling results55-58 on the identity of the cell source present
in BM that is capable of lineage transdifferentiation with
adoption of heterotopic cellular phenotypes. Whole BM
has been fractionated based on specific cell surface an-
tigens that have traditionally identified hematopoietic pro-
genitors, with deletions of lineage-committed cells by the
same cell-sorting mechanism of surface epitopes. A va-
riety of cells with similarities to HSCs found in BM have
been isolated from such disparate tissue as skeletal muscle
and adipose.52,59 Other isolation methods have sought to
define a functional aspect of cell populations based on

gene expression under tight control during cell differ-
entiation. One example of these critical proteins are the
adenosine triphosphate–binding cassettes (ABC trans-
porters similar to the BCRP gene), marking cells as primi-
tive side population cells when isolated by flow cytom-
etry.52,60 Despite these efforts, there are no clear answers
as to the identity of the cell type capable of observed phe-
notypic plasticity. Other researchers argue that cell trans-
differentiations may represent a “function” or capabil-
ity of various cell types rather than a capability limited
to a specific subset of cells.50 Stated differently, perhaps
various primitive cell types that persist in the postnatal
animal may maintain enough genome plasticity to be ca-
pable of reprogramming toward alternative phenotypes.
Still other evidence61,62 has demonstrated that certain cell
types are capable of fusing with alternative lineage cells
and of subsequently adopting the form and function of
the originator cells. Whichever is the true mechanism or
cell identity that accounts for postnatal cell plasticity, it
seems reminiscent of the lessons learned once again from
the cloned sheep Dolly about DNA conservation and re-
activation in the postnatal organism.

If mesenchymal cells from BM can in fact become,
for example, endodermal hepatocytes, it would be ad-
vantageous to prospectively isolate the cell populations
capable of this feat. Despite all that is known about the
multipotent HSCs residing in BM, there exists a second
population of unique progenitor cells in BM, mesenchy-
mal stem cells (MSCs).3,37,63,64 Originally believed to rep-
resent the stromal or supportive cell substrate for the HSC,
the MSC has recently been rediscovered of sorts, as has
its far-reaching capacity to become multiple mesenchy-
mal lineages.65 Much work has been done in an effort to
isolate and prospectively define the cell type that de-
rives from BM and gives rise in vitro to adipocytes, chon-
drocytes, and osteoblasts.65-78 A true MSC, if it exists,
would be a highly beneficial biological tool with poten-
tial clinical applications for the regeneration of connec-
tive tissue. Being that connective tissue is, relatively speak-
ing, metabolically quiescent, in contradistinction to liver,
for example, it is little surprise that structural tissue en-
gineering applications for MSCs have garnered such early
attention. If MSCs demonstrate sufficient cellular phe-
notypic plasticity, their potential for use as raw material
for tissue engineering would seem a logical extension of
this biology.

Despite an apparent capacity to be reprogrammed
from what was previously thought to be a terminally dif-
ferentiated cell type, transgermal plasticity to endo-
derm and ectoderm has not been observed for postnatal
cells until recently. Jiang et al,79 at the University of Min-
nesota, recently showed that perhaps BM does contain a
pluripotent cell type with capabilities similar to those of
the more volatile ES cell. These investigators chose to term
their specialized cells “multipotent adult progenitor cells”
(MAPCs) to distinguish them as unique from what has
been previously identified as MSCs. Unlike MSCs, MAPCs
have demonstrated the long-sought transgermal plastic-
ity of more primitive ES cells.79,80 These same MAPCs
could be isolated from numerous tissue compartments,
including BM, muscle, and brain.80 In addition, they were
capable of adopting varied functional phenotypes of neu-
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rons (ectoderm), hepatocytes (endoderm), and mul-
tiple mesenchymal lineages of stromal and hematopoi-
etic lineages.79 The origin of these cells and whether they
exist in various tissue compartments or are created as a
by-product of the culture process remain unknown. Once
again, a broader theme of biological redundancy and ge-
nome plasticity seems to be represented by these find-
ings. Not all investigators agree, and the skeptics are many.
Perhaps to avoid some of the controversy altogether, the
Minnesota group chooses not to refer to their cells as stem
cells at all, choosing instead the more generic term mul-
tipotent progenitors. These descriptions of MSCs and
MAPCs have served to further fuel the debate over what
constitutes a true stem cell.

DEFINING THE STEM CELL

As the number of studies claiming cell transdifferentia-
tion have flourished, so have the objections of the most
outspoken critics of stem cell biology.51,81,82 The same sci-
entists with some of the more distinguished records of
investigation in stem cell biology have vocally ex-
pressed concerns over the rigor of the science and the
justifiability of the claims being published.81 Strict cri-
teria have been called for in order for claims of transdif-
ferentiation to be considered plausible.83,84 Cells need to
be prospectively isolated, purified to homogeneity, and
well characterized before in vivo testing.81,83,84 The analy-
sis of cell fate or function in animal models that place
the population of cells in a stressed environment or pro-
vide for unique cellular environments with their associ-
ated signals has been the proving ground for cell popu-
lations of interest. Once localized to a particular tissue,
the candidate pluripotent cell must demonstrate tissue-
specific function.81 Furthermore, the cell must contrib-
ute substantially to the function of the host tissue.51,81 The
essential characteristics that a cell must demonstrate be-
fore being considered a “stem cell” in the classic sense
have also been called for. The candidate cell must be ca-
pable of asymmetrical cell division, producing an exact
multipotent replica cell and an additional progeny cell
that can perform a more specialized function.39,40,85 In this
way, cells for tissue specialization are achieved without
loss of the full potential of the founder cell population.
Despite these calls for a uniformity of approach and lexi-
con, the relevant literature persists with a certain ambi-
guity of claims and terms.

PROSPECTIVE CLINICAL APPLICATIONS

OF CELLULAR THERAPY

Irrespective of the true “stemness” of these unique cell
populations, they may have significant utility in a vari-
ety of clinical applications.2,86-88 Several therapeutic strat-
egies are immediately apparent that may exploit the
unique “stemlike” activity of the various cell popula-
tions under study. Given their capacity for self-renewal,
proliferation, differentiation, and wide distribution, it
would be appealing to adopt a gene transfer strategy into
HSCs or MSCs.86 This same strategy has been success-
fully demonstrated in murine systems as proof of prin-
ciple (see the Rag2 example in the “ES Cells: Concepts

and Definitions” section and Figure 2).16 Numerous heri-
table gene defects and other acquired diseases would be
seemingly amenable to this approach.86,87 Postnatal so-
matic stem or progenitor cells could also be used in a form
of cellular therapy for local tissue repair and regenera-
tion.2,89,90 Numerous examples of this approach have been
initiated. For example, MSCs could be implanted lo-
cally to promote or augment repair or regeneration of a
fractured or osteoporotic bone.2,91,92

In a series of experiments, Pereira et al74,93 infused
donor wild-type MSCs into a transgenic mouse model of
osteogenesis imperfecta. In this syngeneic transplant
model, transplanted cells populated the BM and re-
placed defective osteoblasts in weakened bone and car-
tilage as a result of defective type I collagen synthe-
sis.74,93 This work resulted in an abbreviated clinical trial94

for the treatment of collagen defects in children with os-
teogenesis imperfecta, which demonstrated a decreased
fracture rate and increased bone density in children in
whom transplantation was successful. This early work
and seemingly simple clinical success has provided the
requisite proof of principle that a deficient cell popula-
tion could be replaced by an exogenous source of cells.
These experiments exploited several stemlike abilities of
MSCs. The transplanted MSCs were able to serve as pre-
cursors to the more specialized osteoblasts and were suc-
cessfully engrafted in sites of deficient collagen synthe-
sis. For the therapeutic cell fraction to engraft,
myeloablation was performed to tolerize to the thera-
peutic cellular fraction.94 This necessity once again dem-
onstrated one of the more prohibitive biological hurdles
to the widespread clinical applicability of a cellular re-
placement strategy, that is, cell transplant rejection.

If cellular therapy is to become a reality, many of
the same hurdles of graft tolerance that face solid-organ
transplantation will have to be addressed. Most experi-
ments that have been performed with HSCs as a cellular
source have thus far involved a marrow ablative regi-
men such that hematopoietic chimera are created.47,95,96

This strategy has provided the parallel benefit of toler-
ance to the intended therapeutic cellular transplant. If a
cell source other than HSCs is intended to be used, this
same marrow replacement strategy quickly becomes in-
effective. Now that other potential sources of multipo-
tent cells have been identified, alternative strategies for
their use in an allogeneic setting still need to be ex-
plored. Autologous ES cells derived from therapeutic clon-
ing may address many of the immunologic concerns. How-
ever, even autologous ES cells would require ex vivo
manipulation to be used for replacement of deficient cells
or their gene products.86 These cells have thus far shown
themselves to be somewhat resistant to efficient gene trans-
duction.86

SUMMARY

As the political debate about stem cell research contin-
ues, the scientific discoveries and substantiation of ear-
lier claims will proceed. Obvious potential clinical ben-
efits may result from much of this work, but in a larger
sense the rethinking of long-held biological paradigms
may prove to be ultimately as valuable. The concerns
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voiced by others to proceed with caution and await the
rigors demanded by good science should be the prece-
dent. The alternative is to allow the hype to embolden
claims and hopes that may not be deliverable if a “stem
cell bubble” goes unchecked. A great deal of basic re-
search is needed to further explore the current candi-
date cell populations before potential clinical benefits of
stem cell research can begin to be realized.

Corresponding author: Karl G. Sylvester, MD, Depart-
ment of Surgery, Stanford University School of Medicine,
257 Campus Dr, Stanford, CA (e-mail: Karl.Sylvester
@Stanford.edu).
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