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Although the concept of ‘cancer stem cell’ was first proposed more then a century ago, it has attracted a greatAbstract
deal of attention recently due to advances in stem cell biology, leading to the identification of these cells in a
wide variety of human cancers. There is accumulating evidence that the resistance of cancer stem cells to many
conventional therapies may account for the inability of these therapies to cure most metastatic cancers. The
recent identification of stem cell markers and advances in stem cell biology have facilitated research in multiple
aspects of cancer stem cell behavior. Stem cell subcomponents have now been identified in a number of human
malignancies, including hematologic malignancies and tumors of the breast, prostate, brain, pancreas, head and
neck, and colon. Furthermore, pathways that regulate self-renewal and cell fate in these systems are beginning to
be elucidated. In addition to pathways such as Wnt, Notch and Hedgehog, known to regulate self-renewal of
normal stem cells, tumor suppressor genes such as PTEN (phosphatase and tensin homolog on chromosome 10)
and TP53 (tumor protein p53) have also been implicated in the regulation of cancer stem cell self-renewal. In
cancer stem cells, these pathways are believed to be deregulated, leading to uncontrolled self-renewal of cancer
stem cells which generate tumors that are resistant to conventional therapies. Current cancer therapeutics based
on tumor regression may target and kill differentiated tumor cells, which compose the bulk of the tumor, while
sparing the rare cancer stem cell population. The cancer stem cell model suggests that the design of new cancer
therapeutics may require the targeting and elimination of cancer stem cells. Therefore, it is imperative to design
new strategies based upon a better understanding of the signaling pathways that control aspects of self-renewal
and survival in cancer stem cells in order to identify novel therapeutic targets in these cells.

‘Decades of cancer research may need to be re-evaluated, therapies to cure the most common human cancers and poses the
because standard tumor-targeting therapies may be off the mark, question of whether we are targeting the right cells in human
mounting research suggests.’ This quote from ABC News, Novem- cancers. Conventional therapies have been designed largely to
ber 2006,[1] voices the concerns over the failure of current cancer target bulk and cycling populations in tumors. Evidence is ac-
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cumulating from a number of human malignancies that suggests
that most, if not all, malignancies harbor a subcomponent of
cancer cells possessing stem cell properties, which have been
termed ‘cancer stem cells’ (CSCs). These properties include self-
renewal, which drives tumorigenesis, and differentiation, which
generates the bulk of tumor cells. The deregulation of stem cell
self-renewal pathways through the accumulation of both genetic
and epigenetic changes may be essential for the malignant trans-
formation of CSCs.[2-4] During normal development, signals from
the surrounding niche, or microenvironment, regulate stem cell
self-renewal. The altered reorganization of these niches may result
in aberrant signals that lead to deregulation of stem cell self-
renewal.[5] This concept is supported by a recent report demon-
strating an increase in the self-renewing CSC population resulting
from increasing the vasculature in the brain tumor microenviron-
ment.[6] On the contrary, the depletion of blood vessels from
xenografts ablated self-renewing tumor stem cells and inhibited
tumor growth.[6] Thus, the aberrant regulation of stem cell self-
renewal due to both extrinsic and intrinsic signals may generate
the malignant phenotype. Although the processes that control self-
renewal are complex and only beginning to be understood, the
concept of CSCs has fundamental implications for understanding
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Fig. 1. A model illustrating the rationale for the development of cancer
stem cell (CSC) therapies. Conventional therapies fail to treat advanced
and metastatic tumors effectively. The CSC hypothesis offers an alterna-
tive model, suggesting the development of therapies that can target the
rare cancer stem cell population. Preliminary studies have suggested that
CSCs can be targeted either by directly targeting self-renewal pathways or
by inducing terminal differentiation, which will result in depletion of CSCs
with self-renewal.

tumor biology, as well as developing new strategies to combat
cancer. suggests the existence of mammary stem/progenitor cells. Kordon

This review discusses the evidence for the existence of CSCs in and Smith[15] first described the repopulation of mouse mammary
a variety of human malignancies and the implications of the CSC gland through serial transplantation of retrovirally tagged epi-
model for the development of new cancer therapeutics. A model thelial fragments, demonstrating the clonal nature of this repopula-
illustrating the rationale for the development of stem cell-targeted tion. More recently, the generation of a functional mammary gland
therapies is summarized in figure 1. from a single stem cell has been described.[16]

In normal tissues, homeostasis is tightly regulated to ensure the
1. Isolation of Normal Adult and Cancer Stem

generation of mature cells throughout life without depletion of
Cells (CSCs)

stem cell pools.[17] Each tissue comprises a cellular hierarchy
including stem cells able to generate all progeny, committed

Stem cells are defined by two distinct properties: (i) self-
progenitors, and terminally differentiated cells. The stem cells in

renewal, characterized by the ability to go through numerous
each tissue are believed to communicate with their microenviron-

cycles of cell division while maintaining an undifferentiated state;
ment or surrounding stroma to maintain their homeostasis. While

and (ii) multipotency, or the ability to generate progeny of distinct
stem cell self-renewal is necessary for tissue repair and regenera-

cell types.[7,8] Tissue-specific (adult) stem cells are distinguished
tion, it also carries the risk of genetic alteration in stem cells due to

from embryonic stem cells (ESCs) in that their ability to differ-
the error-prone nature of DNA replication. Thus, the pathways that

entiate is largely restricted to cell types within a particular organ.
control stem cell self-renewal and the microenvironment in which

Although transdifferentiation (plasticity) of adult stem cells from
the stem cells reside may both play a role in carcinogenesis.[18]

tissues such as brain or blood into mature cells of different tissues
Deregulation of self-renewal and subsequent loss of homeostasis

has been reported, this apparent plasticity is often the result of a
may result in malignant transformation of human tissues, and thisrare fusion of stem/progenitor cells of different origins.[9-11] Hema-
forms the basis of the CSC hypothesis.topoietic stem cells (HSCs) from human and mouse identified by

The concept of a CSC was first proposed by Virchow andcell surface marker expression were able reconstitute the hemato-
Cohnheim almost 150 years ago based on the similarities betweenpoietic system.[12-14] The expansion and regeneration of mammary
fetal development and certain types of tumors such as teratocarci-epithelium during puberty and pregnancy in reproductive cycles
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nomas.[2] John Dick and his colleagues[19] were the first to isolate NOD/SCID mice, whereas 5 × 105 CD44– cells failed to form
such cells from acute myeloid leukemias where a small subset of tumors.[36]

CD34+CD38– cells that comprised <1 in 10 000 cells could trans- The existence of stem cells in normal lung and lung cancer has
fer human leukemia into NOD/SCID (immunodeficient) mice, also been shown by the isolation of cells that exhibited self-
whereas the remaining population that did not bear this phenotype renewal and multipotency.[37] Most recently, the identification and
failed to do so. Furthermore, this group demonstrated the hetero- characterization of CSC populations in colon tumors has been
geneity of leukemia CSCs with hierarchical self-renewal potential reported.[24,25] Ricci-Vitiani et al. and O’Brien et al. isolated
reminiscent of their normal counterparts.[20] Similar techniques CD133+ and CD133– cells from a number of human colon cancers
have been used to demonstrate cellular hierarchies in solid tumors, and injected them either subcutaneously or under the renal capsule
including breast, prostate, brain, pancreas, and colon.[21-26] Implan- of NOD-SCID mice. Both groups independently demonstrated
tation of small subsets of cells from these solid tumors revealed that CD133+ cells were not only capable of tumor formation but
that only the cells with stem cell characteristics were able to form that they also re-established the original tumor heterogeneity.[24,25]

tumors, suggesting the existence of CSCs in these tumors. For This is consistent with the CSC hypothesis, which suggests that
example, in collaboration with Michael Clarke, we demonstrated tumors are generated and maintained by a small subset of undiffer-
that human breast cancers contain a stem cell population charac- entiated cells that are able to self-renew and differentiate to
terized by the expression of cell surface markers CD44+C- generate cells that constitute the bulk of tumor.[38] Although CSCs
D24lowLin–. As few as 200 of these cells, comprising 1–10% of and their differentiated progeny carry the same oncogenic muta-
the total cell population, were capable of forming tumors when tions, the more differentiated cells are non-tumorigenic because of
implanted in NOD/SCID mice. In contrast, 20 000 cells that did their inability to self-renew.[18]

not express these markers were unable to form tumors.[23] Consis- Although progress has been made in identifying CSCs from a
tent with the CSC model, the stem cells were able to generate variety of human malignancies, the pathways that drive transfor-
tumors that recapitulated the phenotypic heterogeneity of initial mation of these cells are poorly understood. Since transformation
tumor. We and others have confirmed that breast CSCs are not appears to be caused by mutations that dysregulate normal stem
only tumorigenic but also form mammospheres in vitro, a property cell self-renewal, it is critical to understand the pathways that
described previously for normal mammary stem/progenitor regulate this process.[39] Increased self-renewal and decreased
cells.[27,28] Interestingly, these cells also expressed a stem cell differentiation of stem cells would be expected to lead to an
marker, Oct-4, lending additional support to the CSC hypo- increase in stem cell pools. This has also been termed ‘maturation
thesis.[27] arrest’ or ‘blocked ontogeny’ as opposed to dedifferentiation of

mature cells.[40] As early as 1950s, Furth[41] proposed the acquiredThe identification and subsequent use of a cell surface antigen,
inability of immature leukocytes to respond to forces normallyCD133, a five transmembrane glycoprotein,[29] enabled Uchida et
regulating their proliferation and maturation. It is now widelyal.[30] to isolate human CNS stem cells characterized by
accepted that the idea of ‘maturation arrest’, through arrestedCD133+CD34–CD45– expression. Through serial dilution, this
differentiation of tissue-based stem cells or their immediate proge-group demonstrated that a single CD133+CD34–CD45– cell was
ny, is closely linked to the development of human malignancies.[42]able to form a neurosphere in in vitro culture.[30] In addition to the
Therefore, a great deal of research is now underway to help usidentification of normal neuronal stem cells, the existence of CSCs
better understand the self-renewal and differentiation pathways ofin brain tumors has also been reported.[31-33] Through cell sorting
normal and CSCs.for CD133+, a functional cellular hierarchy in the brain tumor cell

population was demonstrated.[34] Furthermore, CD133+ human
brain tumor cells, but not CD133–, were able to form tumors in 2. Self-Renewal Pathways that are Dysregulated
NOD-SCID mouse brains and neurospheres in in vitro cultures.[22] in CSCs

Xin et al.[35] demonstrated that prostate regenerating cells are
enriched in stem cell antigen-1 (Sca-1) expression. Further evi- In their microenvironment, stem cells are maintained through
dence for the existence of CSC population in human prostate infrequent and mainly asymmetric divisions by which they give
tumors has been reported.[36] Richardson et al.[36] has identified a rise to two daughter cells with distinct fates: one is the exact copy
stem cell population in normal human prostate characterized by of the parent, the other is programmed to differentiate. Stem cells
CD133+ expression and in human prostate tumors characterized as in self-renewing mammalian epithelium are believed to exert an
CD44+/α2β1hi/CD133. As few as 500 cells with this phenotype axis of polarity. Asymmetric cell division takes place perpendicu-
(which constituted 0.1% of total tumor cells) formed tumors in lar to this axis, regenerating the stem cells as well as generating a
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committed daughter cell.[43] These processes are relatively well expressed in normal human mammary epithelial stem/progenitor
studied in Drosophila melanogaster, and suggest interesting links cells while downregulated in differentiated cells.[68] Activation of
between stem cell self-renewal and transformation.[44-46] Disrup- Hh signaling increases mammosphere-initiating cell number and
tion of asymmetric cell division in Drosophila impaired the polari- mammosphere size; conversely, inhibition of the pathway results
ty and induced neoplastic growth in epithelia and neurons.[47,48] in a reduction of these effects. These effects are mediated by the
Based on studies in flies and initial observations in mammalian polycomb gene BMI1. Furthermore, overexpression of GLI2 in
stem cells, alteration of self-renewal pathways appears to be an mammosphere-initiating cells results in the formation of ductal
important mechanism underlying the malignant transformation hyperplasia, and modulation of BMI1 expression in mammo-
resulting in the generation of CSCs. sphere-initiating cells alters mammary development in a human-

ized immunodeficient mouse model.[68]

3. Pathways Involved in Stem Cell Self-Renewal GLI1 was originally identified as a gene that was amplified in
human glioma.[69] Ectopic expression of GLI1 or GLI2 in the skin
of Xenopus or mice results in tumor formation.[70,71] Hh signaling

3.1 Hedgehog Signaling
components were undetectable in normal human ductal epithelium
but strongly expressed in precursor cells and invasive lesions, andOne of the signaling pathways implicated in embryonic devel-
recently an abnormal Hh expression has also been reported inopment is Hedgehog (Hh), first identified in Drosophila screen for
pancreatic CSCs.[26,72]

genes that were required for patterning of the early embryo.[49]

Subsequent identification of three Hh family members including
Sonic (SHH), Desert (DHH), and Indian (IHH) in mammals led to 3.2 Notch Signaling
the demonstration of its role in the development of human malig-
nancies.[50,51] Dahmane et al.[52] demonstrated a layer-specific ex- Notch signaling was first discovered in Drosophila, where it
pression of SHH in the perinatal mouse neocortex and tectum, was observed that loss of function of the Notch gene resulted in
while the expression of glioma-associated (GLI) oncogenes GLI1 notches at the wing margin. In flies, the Notch gene encodes a
and GLI2 were limited to the proliferative zones. Thus, SHH 300kD transmembrane receptor with 36 tandem EGF receptor-like
serves as a mitogen for neocortical and tectal precursors, which repeats and three cysteine-rich Notch/LIN-12 repeats in its ex-
mediates cellular proliferation in the dorsal brain.[52] Moreover, tracellular domain.[73] Four notch proteins (Notch1–4) have been
the Hh-GLI pathway regulates homeostasis in embryonic and identified in vertebrates, encoded by four homologous genes and
adult mouse neocortical stem cells by cooperation with epidermal two Notch ligands, Delta and Jagged.[74,75] Notch is known to
growth factor (EGF) signaling.[53] Palma et al. and others reported promote the survival and proliferation of neural stem cells through
similar findings that Hh-GLI pathways are required for prolifera- inhibition of their differentiation.[76,77] Notch also plays a role in
tion of mouse forebrain subventricular zone (SVZ) stem cell niche brain development: a transient administration of Notch ligands to
and for the production of new olfactory interneurons in vivo.[54,55] the brain of adult rats increases the number of newly generated
Abrogation of SHH signaling resulted in the dramatic reduction of precursor cells and improves motor skills after ischemic injury.[78]

a number of neural progenitors in both the postnatal SVZ and Binding of ligand to a Notch receptor initiates three proteolytic
hippocampus.[56] cleavages, two cleavages take place at the extracellular domain of

Notch, followed by a third cleavage by a γ-secretase complex inDeregulation of the Hh pathway has been reported for a number
the plasma membrane that releases the intracellular domain of theof human malignancies including basal cell carcinoma (BCC),
receptor into cytoplasm.[79] This intracellular domain of Notchmedulloblastoma, glioma, colon, prostate, small cell lung cancer,
then translocates into the nucleus to transcribe a number of targetand pancreatic and breast cancers.[51,57-62] Although rare, mutations
genes.of SHH were found in BCC, medulloblastomas, and breast carci-

nomas.[59] However, another study found no missense mutations of Inhibitors of the γ-secretase complex deplete stem cells and
Patched1 (PTCH1) and SHH in 84 primary human breast carci- slow the growth of Notch-dependent tumors such as medulloblas-
nomas.[63] Hh ligands bind to PTCH1 and PTCH2 transmembrane toma and T-cell leukemia.[80-83] We have previously demonstrated
receptors.[64,65] The ligation of Hh with Ptch receptors relieves the that induction of Notch signaling promotes self-renewal of human
inhibitory effect of Ptch on another transmembrane protein, mammary stem cells via increasing cellular proliferation of stem
Smoothened (Smo) and, subsequently, induces the activation of and early progenitor cells. We observed a 10-fold increase in
GLI transcription factors.[66,67] We have recently demonstrated that secondary mammosphere formation after treatment with the
the Hh signaling components PTCH1, GLI1, and GLI2 are highly Notch-activating Delta/serrate/Lag-2 (DSL) peptide. Activation of
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this pathway also increased branching morphogenesis in three-
dimensional matrigel cultures. These effects were completely
blocked by an anti-Notch antibody or γ-secretase inhibitor, sug-
gesting a specific requirement of Notch in these signaling
events.[84]

The vertebrate Notch4 gene has also been shown to be involved
in normal mammary development.[85] In vitro, overexpression of a
constitutively active form of Notch4 inhibits differentiation of
normal breast epithelial cells.[86] In vivo, transgenic mice expres-
sing a constitutively active form of Notch4 fail to develop normal
mammary glands and subsequently develop mammary tumors.[87]

In contrast, Notch1 may also function as a tumor suppressor in a
tissue-specific fashion. Nicolas et al. demonstrated that Notch1
inactivation results in increased Gli2 expression and subsequently
development of BCC-like tumors.[88]

3.3 Wnt Pathway

The Wnt (wingless-type mouse mammary tumor virus
[MMTV] integration site family) pathway was first identified in
Drosophila with the characterization of the wingless (Wnt1) gene,
a segment polarity gene that functions during embryogenesis.[49]

The canonical Wnt pathway regulates a number of events in cells
by binding to cell surface receptors of the Frizzled family, result-
ing in activation of the Disheveled (DSH) family of proteins and
ultimately nuclear translocation of β-catenin (figure 2). DSH is a
key component of a membrane-associated Wnt receptor complex
that inhibits the axin/glycogen synthase kinase 3β (GSK3β)/ade-
nomatous polyposis coli (APC) protein complex. DKK1 (dickkopf
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Fig. 2. Potential therapeutic interventions involving the PTEN (phospha-
tase and tensin homolog) and Wnt (wingless-type mouse mammary tumor
virus integration site family) pathways. PTEN activates the phosphatidyli-
nositol-3-kinase (PI3K)/Akt pathway via dephosphorylation of PI(3,4,5)P3.
Once activated, Akt phosphorylates and activates target proteins such as
mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase,
70kDa (RPS6KB2), and S6. Activated Akt inhibits glycogen synthase
kinase-3β (GSK3β), resulting in disruption of β-catenin-GSK3β complex
and subsequent activation of β-catenin. A strong association of PTEN gene
deletion and poor prognosis in many human tumors makes components of
the PTEN pathway attractive drug targets. Sites for potential therapeutic
intervention are indicated. APC = adenomatosis polyposis coli protein; Bio
= 6-bromoindirubin-3′-oxime; DKK1 = dickkopf homolog 1; DSH = dishev-
eled family of proteins; LEF = lymphoid enhancer-binding factor; LRP =
low-density lipoprotein receptor related protein; P = phosphate; PIP3 =
phosphatidylinositol-triphosphate; RTKs = receptor tyrosine kinases; Src =
v-src avian sarcoma oncogene homolog; TCF = T-cell factor.

homolog 1) encodes a secreted Wnt antagonist that binds to low-
density lipoprotein receptor-related protein (LRP)-5/6 and induces H-Ras, or polyoma middle T antigen, which suggests that these
its endocytosis, leading to inhibition of the canonical pathway.[89] genes may not be involved in stem cell self-renewal.[93] Further-
The axin/GSK3β/APC complex normally promotes the proteolytic more, loss of LRP5 significantly reduced early proliferation of
degradation of β-catenin (figure 2). However inhibition of the β- progenitor cells and subsequent formation of mammary tumors in
catenin destruction complex leads to stabilization and nuclear MMTV/Wnt1 transgenic mice, indicating that LRP5 plays a role in
translocation of β-catenin, where it interacts with the T-cell factor/ Wnt signaling.[94]

lymphoid enhancer-binding factor (TCF/LEF) family of transcrip-
Intestinal stem cells have been identified by using a 5-bromode-tion factors to promote specific gene expression.

oxyuridine (BrdU)-retaining assay.[95] These cells are located at
A growing number of Wnt/β-catenin pathway target genes have

the bottom of each crypt.[95] Nuclear β-catenin accumulates at the
been identified.[90] Among these, CCND1, MYC, metal-

bottom of normal adult crypts in small intestine and colon, where
loproteinase genes, MET VEGF, and JAG1 are implicated in

the stem/progenitor cells reside.[96,97] Transgenic expression of the
tumorigenesis. The Wnt pathway is essential for embryonic devel-

Wnt-specific inhibitor DKK1 in the intestine of adult mice reducesopment. Mice deficient in any Wnt pathway components such as
epithelial proliferation with the subsequent loss of crypts as well asWnt3, LRP5/6, or β-catenin fail to develop a primitive streak and
ablation of secretary cell lineages.[98] This suggests a role for thelack mesoderm.[91,92] Li et al.[93] demonstrated the expansion of an
Wnt pathway in the maintenance of intestinal stem cells.epithelial cell population, expressing progenitor cell markers kera-

Bone morphogenetic protein (BMP) signaling also plays a keytin 6 and Sca-1, in MMTV/Wnt transgenic mice. However, this
phenotype was lacking in MMTV transgenic mice expressing Neu, role in gastrointestinal development and maintenance of adult
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tissue homeostasis. He et al.[99] demonstrated that the conditional current cancer therapies do not target CSCs and, therefore, only
deletion of Bmpr1a in mice results in expansion of stem/progeni- differentiated cells will be eliminated and the residual tumors
tor cells and development of intestinal polyposis resembling the containing CSCs will reconstitute the tumor.
human juvenile polyposis syndrome caused by germline nonsense In the hematopoietic system, Zhang et al. and Yilmaz et al. have
mutations of Bmpr1.[100] Studies to understand the pathways that recently reported that conditional deletion of the PTEN tumor
regulate hematopoietic stem cell self-renewal revealed a require- suppressor gene resulted in excessive proliferation of HSCs and
ment for Wnt signaling.[101] Overexpression of activated β-catenin their subsequent depletion in bone marrow.[115,116] Thus, PTEN
not only expands the pool of HSCs in long-term cultures but also deficiency results in myeloproliferative disorders and eventually
activates the LEF1/TCF reporter, suggesting that HSCs respond to leukemia.[115,116] A recent study by He et al.,[117] using conditional
Wnt signaling in vivo.[101] Altogether, these results strongly sug- deletion of PTEN, demonstrated the expansion of intestinal stem
gest that the Wnt pathway plays a key role in self-renewal of adult cells and formation of intestinal polyposis in a mouse model. This
stem cells and that deregulation of the pathway is involved in further indicates that, as a tumor suppressor, PTEN might play a
carcinogenesis. key role in maintaining the homeostasis in a variety of tissues

through regulating stem cell self-renewal.

3.4 PTEN Pathway

3.5 p53 Pathway
Since the discovery of the tumor suppressor gene PTEN,[102,103]

a number of studies placed the protein at the center of complex The tumor suppressor p53 (TP53), its downstream target
signaling networks. Mutations or allelic losses of PTEN have been p21CIP1 (cyclin-dependent kinase inhibitor 1A [CDKN1A]), and
found in a large number of human malignancies including brain, its regulator p19ARF (encoded by the cyclin-dependent kinase
breast, and prostate.[103-106] In addition, germ line mutations of inhibitor 2A gene [CDKN2A]) have all been implicated in the
PTEN cause rare inherited diseases, including Cowden syndrome, regulation of stem cell self-renewal.[118-121] The majority of human
which is associated with the development of malignant tumors.[107] malignancies display either p53 mutations or dysregulation of the
PTEN acts as a lipid phosphatase to dephosphorylate phospha- p53 pathway.[122,123] In response to stress signals, such as UV
tidylinositol-triphosphate (PIP3), which antagonizes the phospha- irradiation and DNA-damaging agents, p53 becomes activated and
tidylinositol-3-kinase (PI3K)/Akt pathway (figure 2). Inhibition or promotes cell cycle arrest or apoptosis, depending on the signal. In
deletion of PTEN results in increased activation of the PI3K/Akt ESCs, however, the p53 cascade appears to play a different role.
pathway, which in turn phosphorylates a number of substrate Despite abundant accumulation of p53 in response to DNA dam-
proteins. In addition to its role in cell-cycle regulation, Akt also age, ESCs from wild-type mice did not activate a p53-dependent
phosphorylates and inactivates GSK3β, which is involved in the stress responses.[124] Lin et al.[125] suggested that activated p53
regulation of Wnt signaling.[108] Akt has also been shown to binds to the promoter of NANOG, a gene required for ESC self-
directly phosphorylate β-catenin at serine 552, which promotes its renewal,[126,127] and suppresses NANOG expression after DNA
nuclear transport. Thus, activation of Akt promotes the Wnt sig- damage. The rapid downregulation of NANOG expression during
naling, resulting in nuclear accumulation of β-catenin (figure differentiation correlates with the induction of p53 transcriptional
2).[109] activity and phosphorylation of p53 at serine 315.[125]

Increased Akt activation in breast cancer patients predicts poor Meletis et al.[128] recently reported that p53 suppresses self-
prognosis.[110] Deletion or reduced PTEN expression in a wide renewal of adult neural stem cells, as demonstrated by increased
range of human tumors predicts resistance to conventional thera- neural stem cell proliferation in vivo and increased neurosphere
pies and a relapse following initial regression.[111,112] Shoman et formation of cells in vitro from p53 null mice brain compared with
al.[111] have reported a strong correlation between the downregula- that of wild-type mice. One of the p53 transcriptional target genes,
tion of PTEN expression and failure to respond to tamoxifen CDKN1A, encoding p21CIP1, has been implicated in maintenance
treatment in 100 estrogen receptor (ER)-positive tumors treated of HSC quiescence. In p21-null mice, baseline HSC self-renewal
with tamoxifen. In prostate tumors, loss of PTEN expression also is increased. However, exposing animals to cell cycle-specific
predicts progression towards invasive and metastatic disease.[113] myelotoxic injury resulted in premature death due to rapid deple-
Deletion of PTEN in a murine model of prostate cancer resulted in tion of HSCs.[121] It is believed that p21 functions as a molecular
expansion of the prostate stem/progenitor cell population and switch regulating the cell cycle entry of stem cells. In its absence,
initiated prostate tumors resembling those in humans.[114] These increased cell cycling causes extensive cellular proliferation, lead-
results further support the concept of CSCs, since they suggest that ing to exhaustion of HSCs. The mammalian CDKN2A locus
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encodes two tumor suppressor proteins, the cyclin-dependent kin- Over the years, approaches to treat human cancers with ‘differ-
ase inhibitor p16INK4a and p19ARF, a potent regulator of p53 entiation’ therapy have been attempted. These strategies have had
stability. Further examination of the role of these two proteins variable success.[137,138] Although a number of agents have been
revealed that expression of p16INK4a and p19ARF resulted in studied to target differentiation, the US FDA-approved all-trans-
proliferative arrest and p53-dependent cell death.[129] retinoic acid (tretinoin) and sodium phenylbutyrate have been

widely used in treating hematologic malignancies that exhibitIn BMI1-null mice, a relationship between stem cell self-
blocks in differentiation. In the hematopoietic system, blockedrenewal and cellular aging may also involve p16INK4a.[118] HSCs
differentiation occurs in acute myelogenous leukemia (AML)in older mice have decreased self-renewal and increased cell death
which is characterized by the accumulation of myeloblasts in thein response to stress.[130,131] Janzen et al.[132] have tested the levels
bone marrow. AML can be divided into eight subclasses (AML-of p16INK4a in HSCs (characterized as Lin–Kit+Sca1+CD34lowFL-
M0 to M7) based on the differentiation of malignant cells.[139]K-2low) from two strains of young and old mice and demonstrated
AML-M3 has a dominant accumulation of promyelocytes, a con-that p16INK4a mRNA was not detectable in young mice, whereas
dition that is called acute promyelocytic leukemia (APL). APL isincreased p16INK4a mRNA levels were observed in old animals.
associated with reciprocal chromosomal translocations, one ofConsistent with these findings, Molofsky et al.[133] reported that
which is the fusion of the retinoic acid receptor α (RARA) geneaging p16INK4a wild-type mice demonstrated significantly more
with the promyelocytic leukemia (PML) gene.[139] The PML-decline in SVZ proliferation, olfactory bulb regeneration, and self-
RARA fusion product inhibits the RARα and acts as a transcrip-renewal compared with p16INK4a-deficient mice.
tional repressor blocking hematopoietic differentiation. Differ-Animal models of tumor recurrence have recently provided
entiation induction therapy with tretinoin followed by chemother-some clues as to pathways that might be involved. The doxycy-
apy has increased long-term APL-free survival of patients.[139-141]cline-inducible Wnt1 transgenic mouse model (MTB/TWNT) of
tretinoin binds to PML-RARA fusion protein and displaces themammary adenocarcinomas depends on continued Wnt signaling,
mSin-3/N-CoR/histone deacetylase (HDAC) complex, whichand downregulation of Wnt pathway results in the rapid disappear-
causes transcriptional repression.[142] However, point mutations ofance of primary mammary tumors as well as pulmonary metasta-
the RARA gene confer tretinoin resistance, and this can be over-sis.[134] However, a significant fraction of tumors progress to a
come by combining tretinoin with HDAC inhibitors. The combi-Wnt-independent state. Studies to further investigate molecular
nation of phenylbutyrate with tretinoin has been reported to bepathways involved in the regrowth of residual tumors showed that
effective in inducing differentiation in an tretinoin-resistant pa-the majority of regressed tumors exhibited complete or partial loss
tient.[143] Retinoid resistance of breast tumors was also overcomeof heterozygosity (LOH) at the TP53 locus, implying a selective
by combination of retinoic acids with HDAC inhibitors.[144] Allloss of the wild type TP53 allele. Furthermore, almost all tumors
these differentiation therapies aimed at inducing differentiation ofwith MTB/TWNT/p53+/+ regressed to a non-palpable state fol-
cancer cells in general may also affect the differentiation of CSCs,lowing doxycycline withdrawal, whereas 40% of tumors arising
which would lose their ability to self-renew. This is depicted infrom MTB/TWNT/p53+/– mice failed to regress, suggesting a
figure 1.specific role for p53.[134] Most recently, two different studies have

demonstrated that in p53-deficient tumors the restoration of p53 In addition to inducing differentiation, a number of stem cell
results in tumor regression or arrest of tumor growth.[135,136]

self-renewal pathways have been targeted for treatment of various
human tumors. As indicated above, the Hh/GLI pathway is acti-

4. Therapeutic Targeting of CSCs vated in many human tumors and in CSCs.[67] Cyclopamine is a
natural steroidal alkaloid that inhibits the Hh pathway by directly

The lack of substantial progress in treating a variety of common binding and suppressing the Smo receptor.[145] Recent studies
advanced human cancers suggests a change in approach is needed. demonstrated that cyclopamine inhibits the growth in cell lines
In addition to drug resistance, the recurrence of tumors after initial and xenografts from a number of human malignancies including
tumor regression by conventional therapies is also very frequent. breast, prostate, pancreas, medulloblastoma, small cell lung can-
One potential reason for this is the failure of current therapies to cer, glioma, and digestive tract tumors.[58,60,72,146-151] Clement et
target CSCs. Design and development of new cancer treatments is al.[60] demonstrated that the Hh/GLI1 pathway is required for self-
therefore necessary to target stem cell properties, i.e. self-renewal renewal of CD133+ glioma CSCs. This group has also compared
and differentiation. If the malignancy results from a blocked the effect of a current chemotherapeutic agent, temezomolide and
ontogeny,[40] then it should be possible to treat cancer by inducing cyclopamine in a glioma xenograft model for inhibiting tumor
differentiation (figure 1). growth and stem cell self-renewal. Cyclopamine was shown to be
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effective in inhibiting self-renewal and tumor growth compared An example of such targeted therapies is the use of trastuzumab in
with temezomolide.[60,152] Taken together, these results suggest HER2-amplified human breast tumors. Despite the success of this
that successful in vivo blockage of the Hh/GLI pathway in tumors therapy, a fraction of patients with HER2 amplification do not
with increased Hh signaling might be an effective treatment that respond to trastuzumab, and studies suggest that mutation or
has the potential to target CSCs. allelic loss of PTEN may contribute to trastuzumab resistance. A

Activation of Notch signaling depends on proteolytic activity recent study by Nagata et al.,[112] reported that reconstruction of
of γ-secretase, which cleaves the intracellular domain of Notch. PTEN in HER2-amplified breast cancer cell lines sensitizes these
Inhibitors of γ-secretase have been shown to inhibit Notch signal- cells to trastuzumab treatment. As discussed earlier, PTEN is
ing. This pathway is activated in Ras-transformed human cells, required for appropriate stem cell self-renewal, and deletion of the
and this activation is required for the maintenance of PTEN gene leads to expansion of stem cell population in the
tumorigenesis.[153] Moreover, Pece et al.[154] showed that inhibition hematopoietic system and prostate. Therefore, the requirement of
of the Notch pathway in breast tumors with increased Notch PTEN for proper action of trastuzumab suggests that aberrant self-
activity can reduce the tumor growth. Furthermore, the treatment renewal due to lack of PTEN may contribute to trastuzumab
of embryonal brain tumors with the γ-secretase inhibitor GSI-18 resistance.
not only slowed tumor growth but also blocked Notch signaling

In the hematopoietic system, normal HSC maintenance depen-
and resulted in a decrease in the stem cell population.[80]

ds on PTEN, and this is mediated by mTOR. Yilmaz et al.[116]

Although the mechanism is not clear, initial studies have sug-
reported that conditional deletion of PTEN in HSCs generated

gested that NSAIDs are effective in prevention of intestinal
transplantable leukemias within weeks. Treatment of these leuke-

tumorigenesis in the familial adenomatous polyposis (FAP)
mias with rapamycin (sirolimus) not only depleted leukemia-

animal model.[155] The NSAID sulindac was shown to reduce both
initiating cells, but also restored normal HSC function.[116] This

the size and number of colorectal tumors in human FAP pa-
demonstrates that in this system, rapamycin can selectively target

tients.[156] Furthermore, He et al.[157] demonstrated that the
the generation and maintenance of leukemia-initiating cells, al-

NSAIDs sulindac and indomethacin mimic the action of APC by
lowing recovery of normal HSCs. This study has important clin-

downregulating the transcriptional activity of the peroxisome
ical implications, since it suggests the feasibility of designing a

proliferator-activated receptor (PPAR) family of nuclear receptor
therapeutic approach to selectively target CSCs while sparing the

proteins, suggesting that it inhibits the downstream targets of the
normal stem cell counterpart. Derivatives of rapamycin have alsoWnt pathway. NSAIDs also inhibit the expression of cyclo-ox-
been used in a number of ongoing clinical trials following theygenase-2 (COX2), which is one of the Wnt target genes and is
promising in vitro results. The cell cycle inhibitor temsirolimuselevated in human colorectal tumors.[158] Several ongoing studies
(CCI-779) is a rapamycin ester that was shown to be effective inthat utilize neutralizing antibodies or small molecule inhibitors are
inhibiting mTOR in selective breast cancer cell lines with in-aimed at directly targeting the Wnt/β-catenin complex. A recent
creased Akt activity.[162] Frost et al.[163] reported antitumor re-high-throughput screen identified a number of compounds that
sponses of temsirolimus in a xenograft model of melanoma, andinhibit the TCF4/β-catenin complex in a reporter assay system.[159]

that these antitumor responses were associated with induced apop-This may have potential implications for a variety of human
tosis and decreased proliferation and angiogenesis. Data fromtumors with an activated Wnt/β-catenin pathway.
ongoing clinical trials of endocrine therapies with mTOR inhibi-BMPs play an important role in a variety of early developmen-
tors such as temsirolimus or everolimus (RAD001), will be invalu-tal processes, such as the induction of neurogenesis in neural crest
able in designing molecularly targeted therapies directed againststem cells and smooth muscle differentiation.[160] Delivery of
CSCs.BMP4 in vivo produces a significant reduction in the stem-like,

The tumor suppressor gene TP53 appears to have a critical roletumor-initiating precursors of human glioblastomas (GBMs). This
in tumorigenesis and stem cell self-renewal. Not surprisingly,effectively blocks tumor growth and associated mortality that
TP53 mutations occur in approximately 50% of human solidoccurs in 100% of mice after intracerebral grafting of human GBM

cells, indicating a tumor suppressor activity of BMPs by mediating tumors, and inactivation of wild-type protein by the components of
the stem cell self-renewal.[161] Moreover, the transient in vitro upstream pathways is also frequent. Small molecule inhibitors
exposure to BMP4 abolishes the capacity of transplanted GBM (nutlins, spiro-oxindales) of MDM2-p53 interactions have been
cells to establish intracerebral GBMs.[161] developed to restore p53 function in patients with wild-type

p53.[164,165] The clinical use of nutlins selectively enhanced theThe need to design molecularly targeted therapeutics for tu-
cytotoxicity of chemotherapeutic agents in AML blasts but not inmors based on their molecular diversity has long been recognized.
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normal hematopoietic progenitors, raising the hope for the design clinic. These therapies have the potential to significantly improve
the effectiveness of cancer therapies.of tailored molecular therapies.
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